83 research outputs found

    Biometric Authentication and Authorization Infrastructures in Trusted Intra-Organizational Relationships

    Get PDF
    Today, the lives of both people and organizations are strongly focused on the creation, development and maintenance of relationships. These are influenced by several factors, amongst which trust plays an important role. Same as in traditional relationships, trust is considered crucial in their digital equivalent; here we can speak of the concept of trust in technology. An example for trust in technology is given by biometric authentication and authorization infrastructures. A possible approach is the use of typing behavior biometrics as authentication method. This provides a higher security, considering several biometric specific problems like replay attacks or template aging. The intra-organizational environment allows an interesting solution to these problems, namely the synchronization of biometric data within a federation of applications running in the same company. This paper presents the influence of the proposed authentication model on trust by means of the technical-formal-informal model inside an organization.Today, the lives of both people and organizations are strongly focused on the creation, development and maintenance of relationships. These are influenced by several factors, amongst which trust plays an important role. Same as in traditional relationships, trust is considered crucial in their digital equivalent; here we can speak of the concept of trust in technology. An example for trust in technology is given by biometric authentication and authorization infrastructures. A possible approach is the use of typing behavior biometrics as authentication method. This provides a higher security, considering several biometric specific problems like replay attacks or template aging. The intra-organizational environment allows an interesting solution to these problems, namely the synchronization of biometric data within a federation of applications running in the same company. This paper presents the influence of the proposed authentication model on trust by means of the technical-formal-informal model inside an organization.Monograph's chapter

    Cost-Effectiveness of Newborn Screening for Spinal Muscular Atrophy in The Netherlands

    Get PDF
    Objectives: Spinal muscular atrophy (SMA) is a rare genetic disorder that causes progressive muscle weakness and paralysis. In its most common and severe form, the majority of untreated infants die before 2 years of age. Early detection and treatment, ideally before symptom onset, maximize survival and achievement of age-appropriate motor milestones, with potentially substantial impact on health-related quality of life. Therefore, SMA is an ideal candidate for inclusion in newborn screening (NBS) programs. We evaluated the cost-effectiveness of including SMA in the NBS program in The Netherlands. Methods: We developed a cost-utility model to estimate lifetime health effects and costs of NBS for SMA and subsequent treatment versus a treatment pathway without NBS (ie, diagnosis and treatment after presentation with overt symptoms). Model inputs were based on literature, local data, and expert opinion. Sensitivity and scenario analyses were conducted to assess model robustness and validity of results. Results: After detection of SMA by NBS in 17 patients, the number of quality-adjusted life-years gained per annual birth cohort was estimated at 320 with NBS followed by treatment compared with treatment after clinical SMA diagnosis. Total healthcare costs, including screening, diagnostics, treatment, and other healthcare resource use, were estimated to be €12 014 949 lower for patients identified by NBS. Conclusions: NBS for early identification and treatment of SMA versus later symptomatic treatment after clinical diagnosis improves health outcomes and is less costly and, therefore, is a cost-effective use of resources. Results were robust in sensitivity and scenario analyses

    On the impact of different approaches to classify age-related macular degeneration: Results from the German AugUR study

    Get PDF
    While age-related macular degeneration (AMD) poses an important personal and public health burden, comparing epidemiological studies on AMD is hampered by differing approaches to classify AMD. In our AugUR study survey, recruiting residents from in/around Regensburg, Germany, aged 70+, we analyzed the AMD status derived from color fundus images applying two different classification systems. Based on 1,040 participants with gradable fundus images for at least one eye, we show that including individuals with only one gradable eye (n = 155) underestimates AMD prevalence and we provide a correction procedure. Bias-corrected and standardized to the Bavarian population, late AMD prevalence is 7.3% (95% confidence interval = [5.4; 9.4]). We find substantially different prevalence estimates for "early/intermediate AMD" depending on the classification system: 45.3% (95%-CI = [41.8; 48.7]) applying the Clinical Classification (early/intermediate AMD) or 17.1% (95%-CI = [14.6; 19.7]) applying the Three Continent AMD Consortium Severity Scale (mild/moderate/severe early AMD). We thus provide a first effort to grade AMD in a complete study with different classification systems, a first approach for bias-correction from individuals with only one gradable eye, and the first AMD prevalence estimates from a German elderly population. Our results underscore substantial differences for early/intermediate AMD prevalence estimates between classification systems and an urgent need for harmonization

    The German AugUR study: study protocol of a prospective study to investigate chronic diseases in the elderly

    Get PDF
    Background The majority of patients suffering from chronic health disabilities is beyond 70 years of age. Typical late-onset chronic diseases include those affecting the heart, the kidney, cancer, and conditions of the eye such as age-related macular degeneration. These diseases disable patients for many years and largely compromise autonomy in daily life. Due to challenges in recruiting the elderly, the collection of population-based epidemiological data as a prerequisite to understand associated risk factors and mechanisms is commonly done in the general population within an age-range of 20 to 70 years. Methods/Design We establish the German AugUR study (Age-related diseases: understanding genetic and non-genetic influences - a study at the University of Regensburg), a prospective study in the mobile elderly general population in and around Regensburg in eastern Bavaria. In the long term, we aim to recruit 3,000 persons of Caucasian ethnicity with at least 70 years of age via residents’ registration offices and conduct 3-year follow-ups. The study protocol includes a standardized interview regarding social and life-style factors, medication history, quality-of-life, and existing diagnoses of common diseases. The participants undergo medical examinations for ophthalmological, cardiovascular or diabetes-related conditions, and general measurements of body shape and fitness. The program is particularly tailored for the elderly. Biobanking of whole blood, serum, plasma, and urine is conducted and standard laboratory measurements are performed in fresh samples. Discussion AugUR is specifically designed as a research platform to host studies of late onset diseases. Consequently, this platform will help (1) to unravel the genetic and non-genetic etiology of disease development and progression, (2) to serve as control group of elderly individuals for comparisons with various patient groups, (3) to derive prevalence and incidence data on chronic diseases, and (4) to provide clinical reference parameters for the elderly mobile general population. This data will foster our understanding of disease mechanisms, which may ultimately help to improve prevention, diagnosis, and therapy for frequent chronic diseases. Here we present the baseline study protocol of AugUR

    1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples

    Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    Get PDF
    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4-2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in genera
    corecore